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Abstract 

This undergraduate thesis consists in classifying images obtained from chest computed tomography (CT) 

scans from patients who have had COVID-19 before by using Neural Networks.  

The Q-NAS model is a quantum inspired algorithm to search for deep networks by assembling 

substructures. The basic premise of a NAS model (Neural Architecture Search) is the capability of 

automatically generating and searching the best neural network architectures, without requiring 
advanced machine learning knowledge from the user. The Q-NAS has the same premise but using 

quantum physics paradigms which improves the accuracy and the convergence time. 

Because of these advantages, the Q-NAS model was applied to the CT images and classified them in six 

different classes according to the post-covid lung pattern found. The purpose of this undergraduate 
project is to generate new neural networks capable of classifying the post-covid patterns with a new 

database and test those models by using new inputs that were obtained from Pedro Ernesto University 

Hospital’s patients. 

 

Keywords: Neural Networks, Post-Covid, Neural Architecture Search, Medical Images 

Classification, Artificial Intelligence. 

  



 

 

  

 

Resumo 

Este Trabalho de Conclusão de Curso consiste em classificar as imagens obtidas a partir de tomografias 

computorizadas do tórax de pacientes que já tiveram COVID-19 usando redes neurais.  

O modelo Q-NAS é um algoritmo de inspiração quântica para pesquisar redes neurais através da 

montagem de subestruturas. A premissa básica de um modelo NAS (Neural Architecture Search) é a 

criação de um método automatizado de criação e pesquisa da arquitetura de redes neuronais, sem a 
necessidade de conhecimento avançado de machine learning por parte do usuário. O Q-NAS tem a mesma 

premissa, mas utilizando paradigmas de física quântica que melhoram a precisão e o tempo de 

convergência. 

Devido a estas vantagens, o modelo Q-NAS foi aplicado às imagens CT e classificou-as em seis classes 
diferentes, de acordo com o padrão pulmonar pós-covid encontrado. O objetivo deste projeto de 

graduação é gerar novas redes neurais capazes de classificar os padrões pós-covid com uma nova base 

de dados e testar esses modelos, utilizando novos inputs que foram obtidos dos pacientes do Hospital 

Universitário Pedro Ernesto. 

 

Palavras-chave: Redes Neurais, Pós-covid, Pesquisa de Arquitetura Neural, Classificação de 

Imagens Médicas, Inteligência Artificial. 
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1. Introduction 

a. Motivation 

Coronavirus disease 2019 (COVID-19) is a highly contagious viral illness caused by severe acute 

respiratory syndrome SARS-CoV-2. It has had a devastating effect on the world’s demographics, resulting 

in more than 5.3 million deaths worldwide. It has emerged as the most consequential global health crisis 

since the era of the influenza pandemic of 1918 [1]. 

After the first cases of this predominantly respiratory viral illness were first reported in Wuhan, Hubei 

Province, China, in late December 2019, SARS-CoV-2 rapidly disseminated across the world in a short 

span of time, compelling the World Health Organization (WHO) to declare it as a global pandemic on 

March 11, 2020. [2] 

The outbreak of COVID-19 has proven to be a worldwide unprecedented disaster and can be considered 

one of the most critical global crises over the last few years. The virus has inflicted billion of lives across 

physically, psychologically and socially. 

Globally, until November 2022, there have been more than 630,000,000 confirmed cases of COVID-19, 

including over 6,500,000 deaths, reported to WHO [3].  

The clinical manifestations of this virus have exhibited deleterious impacts on the respiratory system, 

that is the primary target organ, but also in the brain, hematological system, liver, kidneys, endocrine 

system, and others. 

The persistence of disabling symptoms long after the acute illness has become known as long COVID 19. 

In this study, we aim to use artificial intelligence to analyze new computed tomography chest images 

taken from patients from Pedro Ernesto University Hospital who had COVID-19 before. By doing this, we 

hope to aid medical practitioners in identifying the effects that COVID-19 can have on our lungs by 

improving the detection accuracy of post covid patterns using neural networks.  

The model used to develop these networks was the Q-NAS, that is a quantum-inspired technique for 

finding deep networks by putting together substructures. A NAS is a subarea of AutoML and its model's 

fundamental tenet is the capacity to automatically generate and seek the finest neural network design. 
The same basic idea underpins the Q-NAS, but quantum physics paradigms boost accuracy and 

convergence time. 

 

b. Objectives 

The global idea of the project is to identify different types of patterns that can appear on someone’s lungs 

after they have had COVID-19.  

This was done by applying the Quantum-Inspired Neural Architecture Search (Q-NAS) model to the CT 
images dataset. This work is inspired by [4], that already developed neural networks to classify the 

patterns present on the lungs’ images in six different categories: Normal, Fibrosis, Nonspecific Interstitial 

Pneumonia (NSIP), Reabsorption, Airway, and Other. However, after further analysis of the tomography 

machine outputs, we realized those six categories could be reorganized. Previously all the images were 
grouped into one dataset, but as noticed there are four types of scans and two of them can be used to 

detect those six patterns defined in [4]. 

So, the project presented in this work has two main objectives.  

The first one is to separate the six classifications into two groups, each group using one type of image 
generated by the tomography machine. These new datasets are used to train new networks and compare 

them to the previously generated ones.  

The second objective is to test all these neural networks using new inputs that were obtained through 

the Pedro Ernesto University Hospital to simulate a real use of the tool and check its accuracy. 
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c. Organization 

This work has six main chapters as follows: 

In Chapter 2 some key concepts necessary to understand how the Q-NAS model work are presented. 
This includes a brief introduction to deep learning, convoluted networks, neural architecture search and 

quantum-inspired evolutionary algorithms.  

Chapter 3 describes the types of long covid patterns that can be identified by Q-NAS in chest images.  

In Chapter 4, the best generated neural networks from [4] are be presented, as well as the respective 
dataset that was used for training and the final test accuracy. Those networks are used in the tests 

presented in a further chapter. 

In Chapter 5 the neural networks developed in this work are presented with the new classification dataset 

that was used. 

Finally, some new inputs are used to test the previously presented networks. The outcomes of those 

tests, conclusions and final remarks of this work are presented in the last two chapters. 
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2. Theoretical foundations 

a. Artificial Intelligence (AI) and Deep Learning 

"It is the science and engineering of making intelligent machines, especially intelligent computer 

programs. It is related to the similar task of using computers to understand human intelligence, but AI 

does not have to confine itself to methods that are biologically observable." 

AI today includes the sub-fields of machine learning and deep learning, which are frequently mentioned 

in conjunction with artificial intelligence. These disciplines are comprised of AI algorithms that typically 

make predictions or classifications based on input data. Machine learning has improved the quality of 

some expert systems and made it easier to create them. [5] 

The way in which deep learning and machine learning differ is in how each algorithm learns. "Deep" 
machine learning can use labeled datasets, also known as supervised learning, to inform its algorithm, 

but it doesn’t necessarily require a labeled dataset. Deep learning can ingest unstructured data in its raw 

form (e.g. text, images), and it can automatically determine the set of features which distinguish different 

categories of data from one another. This eliminates some of the human intervention required and 
enables the use of larger data sets, so we can think of deep learning as "scalable machine learning". 

Classical, or "non-deep", machine learning is more dependent on human intervention to learn. Human 

experts determine the set of features to understand the differences between data inputs, usually requiring 

more structured data to learn. [5] 

Deep learning [6] (like some machine learning) uses neural networks. The “deep” in a deep learning 

algorithm refers to a neural network with more than three layers, including the input and output layers. 

This is generally represented using the following diagram: 

 

Figure 1: Illustration of a Deep Neural Network 

The rise of deep learning has been one of the most significant breakthroughs in AI in recent years, 

because it has reduced the manual effort involved in building AI systems. 

Deep learning neural networks, or artificial neural networks, attempts to mimic the human brain through 

a combination of data inputs, weights, and bias. These elements work together to accurately recognize, 

classify, and describe objects within the data. 
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Deep neural networks consist of multiple layers of interconnected nodes, each building upon the previous 

layer to refine and optimize the prediction or categorization. This progression of computations through 

the network is called forward propagation. The input and output layers of a deep neural network are 
called visible layers. The input layer is where the deep learning model ingests the data for processing, 

and the output layer is where the final prediction or classification is made. 

Another process called backpropagation uses algorithms, like gradient descent, to calculate errors in 

predictions and then adjusts the weights and biases of the function by moving backwards through the 
layers in an effort to train the model. Together, forward propagation and backpropagation allow a neural 

network to make predictions and correct for any errors accordingly. Over time, the algorithm becomes 

gradually more accurate. 

The above describes the simplest type of deep neural network in the simplest terms. However, deep 
learning algorithms are incredibly complex, and there are different types of neural networks to address 

specific problems or datasets. The neural networks this study is interested in are Convolutional neural 

networks, that are used primarily in computer vision and image classification applications, and can detect 

features and patterns within an image, enabling tasks, like object detection or recognition. 

 

b. Convolutional neural network (CNN) 

Convolutional neural networks outperform other neural networks when given inputs such as images, 

voice, or audio, for example. Convolutional layer, Pooling layer, and Fully Connected (FC) layer are their 

three primary types of layers. [7] 

A convolutional network's first layer is the convolutional layer. While convolutional layers can be followed 

by other convolutional layers or pooling layers, the last layer is always the fully connected layer. The 

CNN's complexity grows with each layer, allowing it to detect larger sections of the image. Early layers 
emphasize basic elements like colors and borders. The larger features or shapes of the object are first 

recognized when the visual data moves through the CNN layers, and eventually the intended object is 

recognized. [7] 

 

Convolutional Layer 

The convolutional layer is the core building block of a CNN, and it is where most of the computation 

occurs. It requires a few components, which are input data, a filter, and a feature map. Let’s assume 

that the input will be a color image, which is made up of a matrix of pixels in 3D. This means that the 
input will have three dimensions—a height, width, and depth—which correspond to RGB in an image. We 

also have a feature detector, also known as a kernel or a filter, which will move across the receptive 

fields of the image, checking if the feature is present. This process is known as a convolution. 

The feature detector is a two-dimensional (2-D) array of weights, which represents part of the image. 
While they can vary in size, the filter size is typically a 3x3 matrix; this also determines the size of the 

receptive field. The filter is then applied to an area of the image, and a dot product is calculated between 

the input pixels and the filter. This dot product is then fed into an output array. Afterwards, the filter 

shifts by a stride, repeating the process until the kernel has swept across the entire image. The final 
output from the series of dot products from the input and the filter is known as a feature map, activation 

map, or a convolved feature. 
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Figure 2: Convolutional Layer Diagram 

As you can see in the image above, each output value in the feature map does not have to connect to 

each pixel value in the input image. It only needs to connect to the receptive field, where the filter is 

being applied. Since the output array does not need to map directly to each input value, convolutional 
(and pooling) layers are commonly referred to as “partially connected” layers. However, this 

characteristic can also be described as local connectivity. 

Note that the weights in the feature detector remain fixed as it moves across the image, which is also 

known as parameter sharing. Some parameters, like the weight values, adjust during training through 
the process of backpropagation and gradient descent. However, there are three hyperparameters which 

affect the volume size of the output that need to be set before the training of the neural network begins. 

These include: 

1. The number of filters affects the depth of the output. For example, three distinct filters would yield 

three different feature maps, creating a depth of three.  

2. Stride is the distance, or number of pixels, that the kernel moves over the input matrix. While stride 

values of two or greater is rare, a larger stride yields a smaller output. 

3. Zero-padding is usually used when the filters do not fit the input image. This sets all elements that 
fall outside of the input matrix to zero, producing a larger or equally sized output. There are three types 

of padding: 

• Valid padding: This is also known as no padding. In this case, the last convolution is dropped if 

dimensions do not align. 

• Same padding: This padding ensures that the output layer has the same size as the input layer 

• Full padding: This type of padding increases the size of the output by adding zeros to the border 

of the input. 

After each convolution operation, a CNN applies a Rectified Linear Unit (ReLU) transformation to the 

feature map, introducing nonlinearity to the model. 

As we mentioned earlier, another convolution layer can follow the initial convolution layer. When this 

happens, the structure of the CNN can become hierarchical as the later layers can see the pixels within 
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the receptive fields of prior layers.  As an example, let’s assume that we’re trying to determine if an 

image contains a bicycle. You can think of the bicycle as a sum of parts. It is comprised of a frame, 

handlebars, wheels, pedals, et cetera. Each individual part of the bicycle makes up a lower-level pattern 
in the neural net, and the combination of its parts represents a higher-level pattern, creating a feature 

hierarchy within the CNN. 

Ultimately, the convolutional layer converts the image into numerical values, allowing the neural network 

to interpret and extract relevant patterns. 

 

Pooling Layer 

 

Pooling layers, also known as down sampling, conducts dimensionality reduction, reducing the number 
of parameters in the input. Similar to the convolutional layer, the pooling operation sweeps a filter across 

the entire input, but the difference is that this filter does not have any weights. Instead, the kernel applies 

an aggregation function to the values within the receptive field, populating the output array [8]. There 

are two main types of pooling: 

• Max pooling: As the filter moves across the input, it selects the pixel with the maximum value 

to send to the output array. As an aside, this approach tends to be used more often compared to 

average pooling. 

• Average pooling: As the filter moves across the input, it calculates the average value within the 

receptive field to send to the output array. 

While a lot of information is lost in the pooling layer, it also has a number of benefits to the CNN. They 

help to reduce complexity, improve efficiency, and limit risk of overfitting.  

 

Fully Connected Layer 

 

The name of the fully connected layer aptly describes itself. As mentioned earlier, the pixel values of the 

input image are not directly connected to the output layer in partially connected layers. However, in the 

fully connected layer, each node in the output layer connects directly to a node in the previous layer. 

This layer performs the task of classification based on the features extracted through the previous layers 

and their different filters. While convolutional and pooling layers tend to use REL functions, FC layers 

usually leverage a softmax activation function to classify inputs appropriately, producing a probability 

from 0 to 1. 

 

c. Neural Architecture Search (NAS) 

Neural Architecture Search (NAS) is a subarea of AutoML and is an essential step toward automating 
machine learning methods. It is a technique that aims to automate the construction processes of a neural 

network architecture [9]. 

The idea behind using this algorithm is optimizing the process of deciding all the variables necessary 

when creating a CNN. It can automatize de the decisions regarding the architectures which implies 
deciding the quantity of layers, the configuration of filter to be used. Or even, decisions regarding the 

values of the hyperparameters such as the learning rate. As these choices directly influence the 

performance of the network, if it’s fast or has good accuracy, the NAS facilitates the process of optimizing 

the neural network by automatizing the process. 
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d. Q-NAS 

The Quantum Inspired Neural Architecture Search model is one approach that is based on quantum-

inspired evolutionary algorithms. The idea of quantum-inspired computing is to create classical 
algorithms, which can be executed in classical computers, but that take advantage of the paradigms 

of quantum physics [10, 11] 

 

 
Evolutionary Algorithms 

 

Evolutionary algorithms are inspired in the evolution process by using a population of individuals within 

some environment that has limited resources. These limitations generate competition for those resources 
which propitiates the natural selection phenomenon. Given a quality function to be maximized, we can 

randomly create a set of candidate solutions and apply this function to discover the fitness of the 

population – the higher the better. Based on these fitness values some of the better candidates are 

chosen to create the next generation. This is done by applying recombination and mutation to them.  
 

Recombination is an operator that is applied to two or more selected candidates (parents), producing one 

or more new candidates (children). Mutation, on the other hand is applied to one candidate and results 

in one new candidate. Therefore, executing the operations of recombination and mutation on the parents 
leads to the creation of a set of new candidates. These have their fitness evaluated and then compete – 

based on their fitness with the old ones for a place in the next generation. This process can be iterated 

until a candidate with sufficient quality is found or a computational limit is reached [12]. 

 
The general scheme of an evolutionary algorithm in pseudocode is as follows. 

 
BEGIN 

INITIALISE population with random candidate solutions;  

EVALUATE each candidate;  

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO  

1 SELECT parents;  

2 RECOMBINE pairs of parents;  

3 MUTATE the resulting offspring;  

4 EVALUATE new candidates;  

5 SELECT individuals for the next generation;  

OD 

END 

 

 

Quantum Inspired Evolutionary Algorithms (QIEA) 

 
The QIEAs were created by employing important quantum computing concepts, including the quantum 

bit, the linear superposition of states, and the quantum rotation gate in the original evolutionary 

algorithms. 

 
According to empirical findings, QIEAs can solve many optimization problems more effectively and 

efficiently than comparable algorithms with fewer evaluations. This quality can be extremely important 

in applications like NAS, where it can be quite expensive to evaluate potential solutions [13]. 

 
Analogue to a classical computer, the smallest unit of information stored in a two-state quantum 

computer is the Q-bit. The main difference is that besides the regular 1 or 0 states, the Q-bit state can 

be found in a superposition of both states, and it can be described by the following equation: 

 

|Ψ⟩ = 𝛼 |0⟩ +  𝛽|1⟩ 
 

where |Ψ⟩ is the q-bit state, 𝛼 and 𝛽 are complex numbers and |𝛼|2 and |𝛽|2 gives the probability that 

the Q-bit will be found in the 0 or 1 states respectively [14]. 

 

Initially, a Q-bit individual represents all possible states with the same probability. During evolution, a 

Q-gate operator can modify the probability of each Q-bit, so it gradually converges to a single state: the 
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optimal solution. As each quantum individual represents the probability of a state, they cannot be directly 

evaluated: they must be observed to generate classical individuals represented by one single state [13]. 

 
The general scheme of an QIEA in pseudocode is as follows. 

 
BEGIN 

 t  0 ; 
INITIALISE quantum population Q(t);  

GENERATE classical population P(t); 

EVALUATE P(t); 

STORES best solution of P(t) in B(t); 

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO 

 1 t  t+1; 

2 P(t)  generated classical population from Q(t); 

3 EVALUATE P(t);  

4 UPDATE Q(t) using Q-gate;  

5 STORE best individuals of B(t-1)  P(t) in P(t);  

6 STORE the best solution b in B(t); 

OD 

END 

 
 

Quantum Inspired Neural Architecture Search (Q-NAS) 

  

The Q-NAS algorithm was recently developed to address the efficiency issue and was inspired by the 
performance of QIEAs compared to other evolutionary approaches. 

 

In the Q-NAS model, quantum individuals’ chromosomes have two parts: one is responsible for encoding 

the hyperparameters and the other for encoding the structure design of the network. However, this work 
will not focus on hyperparameters evolution because its evolution does not provide better results when 

compared with the Tensorflow’s default hyperparameters values [11]. 

 

As mentioned before, one quantum individual can generate multiples classical individuals based on 
observations, that are then evaluated as solutions containing the network architecture.  

The figure below shows the network generation process for one individual in a specific generation from 

the user input parameters to the final decoded network. 

 
 

 
Figure 3: Q-NAS Network Quantum Individual Representation Scheme [Julia] 

 

Each generation development process has three main phases and can be illustrated by the diagram 
below. This process is repeated over and over until evolution is completed. 
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1. Population generation: the classical population is generated based on the observations of the 

quantum individuals. Based on this observation, the classical individuals are decoded, and the 

corresponding network is ready to be evaluated. 
2. Candidate evaluation: The evaluation procedure involves training the candidate networks for a 

few epochs with a subset of the training data and using a validation dataset to assign a fitness 

score to the individual. 

3. Ranking and update: after the evaluation, quantum individuals are updated based on the best 
classical individuals. This update increases the probability of the most promising function, based 

on its fitness, and consequently reduces the other probabilities proportionally so that it continues 

to add up to 1. 

 

Figure 4: Q-NAS flowchart [11]  

 
Between generation some other processes take place. In the first generation, C(t) individuals are ranked 

and stored in P(t). Note that classical recombination is only possible after the first generation. From the 

second generation, since P(t) exists, a new population C(t) must be evaluated and then the best 

individuals from old (P(t)) and new populations (C(t)) are selected to be saved. Finally, quantum 
individuals are updated based on the best classical individuals. The idea is to gradually modify the 

quantum population so it can generate solutions that are closer to the optimal. 

 

The combination of these processes is repeated for T generations and the general scheme of a Q-NAS in 
pseudocode is as follows, where Q(t) is the quantum population, C(t) is the classical population and P(t) 

is the saved classical population. 
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BEGIN 

 t  0 ; 
INITIALISE quantum population Q(t);  

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO 

1 GENERATE classical population C(t) observing Q(t); 

2 IF t=0 THEN 

EVALUATE C(t); 

P(t)  C(t); 

  3 ELSE 

   C(t)  recombination between C(t) and P(t); 
EVALUATE C(t); 

P(t)  best individuals from C(t)  P(t); 
  4 END IF 

  5 Q(t+1)  UPDATE Q(t) based on P(t) values; 

6 t  t+1; 
 OD 

END 

 

When the evolution is complete, the final architecture is retrained from scratch for 300 epochs with all 
the available training data. In addition, the network is evaluated every ten epochs using a validation 

dataset. The periodic evaluations’ accuracy is used to save the best model during the retraining phase. 

When training is over, the best validation model is applied to the test data to obtain the final accuracy 

value. The test accuracy is used to compare the models among different experiments and with other 
works [11]. 
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3. Post Covid patterns 

In this section, we present the use of Q-NAS algorithm applied to Post Covid Pattern detection in 
computed tomography (CT) images. The images used in this work were extracted from patients by the 

Pedro Ernesto University Hospital and were evaluated and labeled by radiologists after analyzing the 

numerous images generated for each chest CT [15]. 

 
The following tomography images showcase examples of the Post Covid patterns that the network must 

correctly identify.  

 

 
Figure 5: CT with fibrosis-like lesions 

 

Figure 6: CT with nonspecific interstitial pneumonia (NSIP) lesions 
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Figure 7: CT where reabsorption tomographic pattern was identified 

 

 
Figure 8: CT where airway disease was identified 

 

 

As it was mentioned previously, each chest CT generates several images. These images are not 

necessarily of the lung, as the machine scans the chest, they may produce some images of bones 
or other organs for example, and these are called “Other”. The network classification of these images is 

worth discussing, as well as the classification of lung images that don’t present any of the patterns 

mentioned above and can be caller “Normal”. 
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Currently, there are three possibilities for the classification: (1) classify them as two different groups 

(Normal and Other); (2) classify them as a single group; (3) remove Other images and leave only the 

ones where no pattern can be detected in the lung, Normal. 
 

The three possibilities were tested in [4] [15] and dataset without the other class was the most accurate 

one as the best network reached an accuracy of 98.636%. These generated networks will be discussed 

in the next session. 
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4. Previously generated neural networks  

The Q-NAS algorithm used to generate the neural networks responsible for detecting the Post Covid 
Pattern had at its disposal the following function layers. Each classical individual represents a certain 

combination of these layers to be evaluated. In the quantum spectrum, each individual is formed by 

chromosomes that instead of representing one single state (layer), they are in a superposition of all 

states, each with its own probability. 

 

Figure 9: Layer functions [4] 

The first network that was generated in [4] used six possible classifications: Normal, Fibrosis, NSIP, 

Reabsorption, Airway and Other. This configuration had some great results and produced a network with 

a validation accuracy of 0.925% and most importantly, a test accuracy of 89.394%. 

 

Figure 10: Confusion Matrix for network #1 [4] 

However, we can see that there are still problems with the Other classification, as mentioned in the 

previous section. 

For the second network, the experiment the function set was expanded to the one specified below. In 

this new function set there were more convolutional functions which included different filter options. 
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Figure 11: Expanded function set [4] 

 

The second network was generated using same possible classifications and this time, the algorithm 

created a network with a test accuracy of 90.909% which is better than the previous one. It also has less 

layers and a validation accuracy of 92.500%.  

 

Figure 12: Confusion Matrix for network #2 [4] 

The same problem observed in the first network with the Other classification can be found in this one.  

To see if the accuracy would increase without the class Other, two new datasets with only 5 classes were 
created. In the first one, the classes Fibrosis, NSIP, Reabsorption and Airway were kept the same, the 

difference is that in the first dataset we combined the classes Normal with Other. 
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This new dataset generated a network with a 94.091% test accuracy and a 93.500% validation accuracy, 

which is better than the previous two networks. 

 

Figure 13: Confusion Matrix for network #3 [4] 

The second new dataset was created by excluding the class Other, while all the other classes remained 

the same. 

As expected, the results found with this dataset are much better than the ones found in all the other 

experiments. As it can be observed in the confusion matrix below, this is because we don’t have the class 

Other, which was the reason for most of the errors in the previous tests. The generated network has a 

test accuracy of 98.636% and a validation accuracy of 99.500%. 

 

Figure 14: Confusion Matrix for network #4 [4] 

The hyperparameters and evolution parameters configuration shared among all the experiments are the 

following. 
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Figure 15: Parameter and Hyperparameter configuration of the Q-NAS model [4] 

 

More details on the network’s generation, parameters and architecture can be found in [4]. 
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5. New neural networks 

The images used on the previous datasets corresponded to the complete output of a CT scan of a patient. 
However, after analyzing more carefully the images, we realized they are not all the same medical exam. 

The machine itself divides the output into four groups, and each group is used to monitor certain patterns 

in the patients’ lungs. The two we are interested in are the ones automatically classified as  

lung parenchyma and expiration. The first one is used by the doctors to detect the airways disease, and 
the second one helps the detection of fibrosis, NSIP and reabsorption patterns. After this discovery it 

became clear that two models should be generated instead of one, as there is no need to force the 

machine to detect all the patterns among all the images if they are already generated in a way that 

makes this process easier. Therefore, two new neural networks were created and trained using this new 

classification. 

 

a. Lung Parenchyma dataset 

The first one used the lung parenchyma images and was generated using 5 possible classifications: 
Normal, Fibrosis, NSIP, Reabsorption, and Other. The parameters were kept the same as the previously 

mentioned networks for comparison purposes. The results for the new dataset are listed in table below. 

Table 1: Results for the new network #1 

   accuracy 

# # of layers # parameters fitness 
retrain 

validation 
retrain test 

1 15 2.93M 0.97000 0.96500 0.95455 

2 13 10.05M 0.96250 0.9500 0.92636 

3 13 1.25M 0.97000 0.96500 0.95000 

 

As we are using the Normal and Other classes, this network can be compared to network #2 previously 

presented. This new network has a better test and validation accuracies: 95,455% and 96,500% 

compared to 90.909% and 92.500%, respectively. This result was already expected because we’re 
excluding one of the patterns (Airway) as it cannot be detected in these images. So, there are no useless 

inputs, and the classification process becomes easier for the machine. The architecture and confusion 

matrix for new network #1 can be found below. 

Table 2: Architecture for new network #1 

Node Function Name 

1 avg_pool_2_2 

2 max_pool_2_2 

3 conv_5_1_256 

4 conv_5_1_128 

5 max_pool_2_2 

6 conv_1_1_128 

7 max_pool_2_2 

8 conv_1_1_64 

9 avg_pool_2_2 

10 conv_5_1_128 

11 conv_3_1_64 
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12 conv_5_1_128 

13 conv_5_1_256 

14 conv_1_1_512 

15 conv_3_1_128 

 

 

Figure 16: Confusion Matrix for new network #1 

 

b. Expiration dataset 

The second one used the expiration images and was generated using 2 possible classifications: Normal 

+ Other and Airway. The results for the new dataset are listed in table below.  

Table 3: Results for the new network #2  

   accuracy 

# [8]# of layers # parameters fitness 
retrain 

validation 
retrain test 

1 14 2.93M 0.95000 0.96250 0.94318 

2 14 10.05M 0.96250 0.96250 0.92045 

3 14 1.25M 0.96250 0.95000 0.93182 

 

As we are using the Normal + Other class, this network can be compared to network #3 previously 

presented. This new network has a better test and validation accuracies: 94,318% and 96,250% 

compared to 94.091% and 93.500%, respectively. This result was already expected because we’re 
excluding most patterns as they cannot be detected in these images. So, there are no useless inputs, 

and the classification process becomes easier for the machine. The architecture and confusion matrix for 

new network #2 can be found below. 
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Table 4: Architecture for new network #2 

Node Function Name 

1 avg_pool_2_2 

2 conv_1_1_64 

3 conv_1_1_128 

4 conv_1_1_256 

5 conv_1_1_512 

6 conv_3_1_64 

7 conv_3_1_128 

8 conv_3_1_256 

9 conv_3_1_512 

10 conv_5_1_64 

11 conv_5_1_128 

12 conv_5_1_256 

13 conv_5_1_512 

14 max_pool_2_2 

 

 

Figure 17: Confusion Matrix for new network #2 

 

6. Neural Networks Tests 

In order to make some tests and simulate the real use of the networks, the files inside the testing 
directory were replaced by other images. With these new images, the retrain process was run again to 

test the accuracy of the network for new images.  

However, the results obtained were not satisfactory. None of the networks were able to correctly classify 

the new images of the patients from Pedro Ernesto University Hospital and we were not able to determine 

if the problem is with the training or the new inputs. 
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7. Conclusion and next steps 

In this work we were able to develop two new networks that have better accuracies than the one 
previously generated in [4]. This was achieved by using two new datasets that were generated based on 

the output of the CT machine. It’s now more adapted to the real use of the tool as in reality the images 

of used to detect the Airway pattern would not be mixed with the other ones as they correspond to two 

different exams. The one with only two classes has an accuracy of 0.94318, and the one with five of 
0.95455. These values show that this approach is a better one to be followed that the one used before 

to train the previous networks. For future works these new division (lung parenchyma and expiration 

images) can be tested with new datasets that presented promising results in [4], as for example using 

the strategy of removing the Other class. 

However, we were not able to prove the accuracy of neither the neural networks developed in [4], nor 

the ones developed in this work. When new images were used in the train process there were no 

satisfactory results. This need to be further investigated to determine if the problem is in the new inputs 

or the ones used for training the networks.  
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